TORSION OF CIRCULAR RODS HAVING LONGITUDINAL NOTCHES OR TEETH AND A CENTRAL CAYITY

(KEUCBENIE KRUGLYKH STERZBNEI, IMEIUSRCEIER PBODOL' NYE VYTOCBEI LLI zUBTSY I TSENTRAL'NO BAgPOLOZEENNUIU POLOST')

PMY Vol.24, No.2, 1960, pp. 341-349
b, L. Abramian and A.A. babloian
(Erevan)
(Received 19 April, 1959)

The problem considered is that of torsion of a circular prismatic rod with symmetrically-located grooves or teeth in the shape of an annular sector, and with a central circular cavity (Fig. 1).

The exact solution of this problem is obtained by a method proposed in [1] and [2].

FIG. 1.

The determination of the integration constants leads to the solution of infinite systems of linear equations.

It is shown that the systeas obtained are completely regular, that they have an upper liwit and that the free terms reduce to zero (for $k \rightarrow \infty$).

Stiffnesses and stresses are calculated for two special cases: for six teeth and for one notch.

Approximate solutions for similar complicated rods in torsion have been obtained by Stanesku and Duvitrescu [3] and by Manea [4].

1. For the solution of the given problem a stress function $U(r, \phi)$ is sought which satisfies the equation

$$
\begin{equation*}
\frac{\partial^{2} U}{\partial r^{2}}+\frac{1}{r} \frac{\partial U}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} U}{\partial \varphi^{2}}=-2 \tag{1.1}
\end{equation*}
$$

in the rod section, which reduces to zero on the outside contour, and which takes on a constant value U_{0} on the inside contour.

Because of symmetry it is necessary to consider only that part which subtends an angle π / n, where n is the number of notches or teeth (Fig.2). In order that the solution obtained for

FIG. 2. the $2 n$th part shall be valid for the whole section, it is required that the normal derivative of the function $U(r, \phi)$ be zero on the lines $A B$ and $C D$. For determination of the function U it is convenient to use the variable

$$
\begin{equation*}
t=\ln \frac{r}{r_{2}} \tag{1.2}
\end{equation*}
$$

We seek the function $U(r, \phi)$ in the form

$$
\begin{equation*}
U[r(t), \varphi]=\Phi(t, \varphi)-\frac{1}{2} r_{2}^{2} e^{2 t} \tag{1.3}
\end{equation*}
$$

where the function $\Phi(t, \phi)$ satisfies the equation

$$
\begin{equation*}
\frac{\partial^{2} \Phi}{\partial t^{2}}+\frac{\partial^{2} \Phi}{\partial \Phi^{2}}=0 \tag{1.4}
\end{equation*}
$$

We assume that the function $\Phi(t, \phi)$ in the part of the region under consideration (Fig. 2) takes on the values

$$
\Phi(t, \phi)=\quad \begin{array}{ll}
\Phi_{1}(t, \phi) & \text { in region I } \\
\Phi_{2}(t, \phi) & \text { in region II } \\
\Phi_{3}(t, \phi) & \text { in region III }
\end{array}
$$

By making use of expressions (1.3), (1.5) and the boundary conditions on U, we obtain the following conditions

$$
\begin{align*}
& \Phi_{1}(0, \varphi)-\frac{r_{2}^{2}}{2}=\Phi_{1}\left(-t_{1}, \varphi\right)-\Phi_{0}=\left(\frac{\partial \Phi_{1}}{\partial \varphi}\right)_{\varphi=\varphi_{1}}=0 \\
& \Phi_{2}\left(-t_{1}, \varphi\right)-\Phi_{0}=\left(\frac{\partial \Phi_{2}}{\partial \varphi}\right)_{\varphi=-\varphi_{2}}=0 \tag{1.6}\\
& \Phi_{3}\left(t_{2}, \varphi\right)-\frac{r_{3}^{2}}{2}=\Phi_{3}(t, 0)-\frac{r_{2}^{2} e^{2 t}}{2}=\left(\frac{\partial \Phi_{3}}{\partial \varphi}\right)_{\varphi=-\varphi_{3}}=0
\end{align*}
$$

$$
\begin{array}{ll}
\Phi_{1}(t, 0)=\Phi_{2}(t, 0), & \left(\frac{\partial \Phi_{1}}{\partial \varphi}\right)_{\varphi=0}=\left(\frac{\partial \Phi_{2}}{\partial \varphi}\right)_{\hat{=}=0} \\
\Phi_{2}(0, \varphi)=\Phi_{3}(0, \varphi), & \left(\frac{\partial \Phi_{2}}{\partial t}\right)_{t=0}=\left(\frac{\partial \Phi_{3}}{\partial t}\right)_{t=0} \tag{1.7}
\end{array}
$$

for $\Phi_{i}(t, \phi)$ with $i=1,2,3$, where α is a constant characterizing the groove or tooth width, and where

$$
t_{1}=\ln \frac{r_{2}}{r_{1}}, \quad t_{2}=\ln \frac{r_{3}}{r_{2}}, \quad \Phi_{0}=U_{0}+\frac{r_{1}^{2}}{2}, \quad \varphi_{1}=\frac{\pi}{\alpha n}, \quad \varphi_{2}=\frac{\pi}{n}-\frac{\pi}{n \alpha} \text { (1.8) }
$$

2. Upon solving equation (1.4) by the method of separation of variables, we obtain for the functions $\Phi_{i}(t, \phi)$ the expressions

$$
\begin{align*}
& \Phi_{1}(t, \psi)=\sum_{k=1}^{\infty}\left(A_{k}{ }^{(1)} \sinh \alpha_{k} t+B_{k}{ }^{(1)} \cosh \alpha_{k} t\right) \sin \alpha_{k} \varphi+ \tag{2.1}\\
& +\sum_{k=1}^{\infty}\left(C_{k}^{(1)} \sinh \beta_{k} \varphi+D_{k}{ }^{(1)} \cosh \beta_{k} \varphi\right) \sin \beta_{k} t \quad\left(0<\varphi<\varphi_{1},-t_{1}<t<0\right) \\
& \Phi_{2}(t, f)=\sum_{k=1}^{\infty}\left(A_{k}{ }^{(2)} \sinh \lambda_{k} t+B_{k}{ }^{\left(\omega_{2} \cosh \lambda_{k} t\right) \sin \lambda_{k} \varphi+}\right. \tag{2.2}\\
& +\sum_{k=1}^{\infty}\left(C_{k}{ }^{(2)} \operatorname{sinht} \beta_{k} \varphi+D_{k}{ }^{(2)} \cosh \beta_{h} \varphi\right) \sin \beta_{k} t \quad\left(-\varphi_{2}<\varphi<0,-t_{1}<t<0\right) \\
& \Phi_{3}(t, \varphi)=\sum_{k=1}^{\infty}\left(A_{k}{ }^{(3)} \sinh \lambda_{k} t+B_{h}^{(3)} \cosh \lambda_{k} t\right) \sin \lambda_{k} \varphi+ \tag{2.3}\\
& +\sum_{k=1}^{\infty}\left(C_{k}^{(3)} \sinh \gamma_{h} \varphi+D_{k}{ }^{(3)} \cosh \gamma_{h} \varphi\right) \sin \gamma_{k} t \quad\left(-\varphi_{2}<\varphi<0,0<t<t_{2}\right)
\end{align*}
$$

Here

$$
\begin{equation*}
\alpha_{k}=\frac{(2 k-1) \pi}{2 \varphi_{1}}, \quad \beta_{k}=\frac{k \pi}{t_{1}}, \quad \lambda_{k}=\frac{(2 k-1) \pi}{2 \varphi_{2}}, \quad i_{k}=\frac{k \pi}{t_{2}} \tag{2.4}
\end{equation*}
$$

By satisfying the conditions (1.6) and (1.7) we obtain for the integration constants

$$
\begin{align*}
& A_{k}{ }^{(1)}=\frac{r_{2}{ }^{2}}{\alpha_{k} \varphi_{1}} \operatorname{coth} \alpha_{k} t_{1}-\frac{2 \Phi_{0}}{\alpha_{k} \varphi_{1}} \frac{1}{\operatorname{sh} \alpha_{k} t_{1}}, \quad D_{k}{ }^{(1)}=D_{k}{ }^{(2)} \\
& A_{k}{ }^{(2)}=B_{k}{ }^{(2)} \operatorname{coth} \lambda_{k} t_{1}-\frac{2 \Phi_{0}}{\lambda_{k} \varphi_{2}} \frac{1}{\operatorname{sh} \lambda_{k} t_{1}}, \quad C_{k}^{(2)}=D_{k}^{(2)} \tanh \beta_{k} \rho_{2} \\
& A_{k}^{(3)}=-B_{k}^{(2)} \operatorname{coth} \lambda_{k} t_{2}-\frac{r_{3}{ }^{2}}{\lambda_{k} \varphi_{2}} \frac{1}{\operatorname{sh} \lambda_{k} t_{2}}, \quad B_{k}^{(3)}=B_{k}^{(2)} \tag{2.5}\\
& B_{k}{ }^{(1)}=\frac{r_{2}{ }^{2}}{\alpha_{k} \varphi_{1}}, \quad D_{h}{ }^{(3)}=\frac{r_{2}{ }^{2} \gamma_{k}}{t_{2}\left(4+\gamma_{k}^{2}\right)}\left[1+(-1)^{k+1} e^{9 t_{2}}\right]
\end{align*}
$$

$$
C_{k}^{(1)}=-D_{k}^{(2)} \tanh \beta_{k} \varphi_{1}, \quad C_{k}^{(3)}=\frac{r_{2}^{2} \gamma_{k}}{t_{2}\left(4+\gamma_{k}^{2}\right)}\left[1+(-1)^{k+1} e^{2 t_{2}}\right] \tanh \gamma_{k} \rho_{2}
$$

and for determination of the constants $B_{k}{ }^{(2)}$ and $D_{k}{ }^{(2)}$ we obtain a combination of two infinite systems of linear equations.

Upon applying the change in variables

$$
\begin{equation*}
\lambda_{k} \varphi_{2} B_{k}^{(2)}=Y_{k} m-r_{2}^{2}, \quad \beta_{k} t_{1} D_{k}^{(2)}=X_{k}-r_{2}^{2}-2 \Phi_{0}(-1)^{k+1} \tag{2.6}
\end{equation*}
$$

where m is a constant number to be determined later, the combination is obtained in the form

$$
\begin{equation*}
X_{k}=\sum_{p=1}^{\infty} a_{k p} Y_{p}, \quad Y_{k}=\sum_{p=1}^{\infty} b_{k p} X_{p}+Q_{k} \quad(k=1,2, \ldots, \infty) \tag{2.7}
\end{equation*}
$$

where

$$
\begin{gather*}
a_{k p}=\frac{2 m \beta_{k}}{\varphi_{2}\left(\operatorname{mon} \beta_{k} \varphi_{1}+\tanh \beta_{k} \varphi_{2}\right)\left(\lambda_{p}{ }^{2}+\beta_{k}^{2}\right)} \\
b_{k p}=\frac{2 \lambda_{k}}{m t_{1}\left(\operatorname{coth} \lambda_{k} t_{1}+\operatorname{coth} \lambda_{k} t_{2}\right)\left(\beta_{p}^{2}+\lambda_{k}^{2}\right)} \tag{2.8}\\
Q_{k}=-\frac{2 \lambda_{k} r_{2}^{2}}{m\left(\lambda_{k}^{2}-4\right)\left(\operatorname{coth} \lambda_{k} t_{1}+\operatorname{coth} \lambda_{k} t_{2}\right)}\left[1+\frac{\lambda_{k}^{2}-4}{2 \lambda_{k}^{2} t_{1}}\left(\frac{2 \Phi_{0}}{r_{2}^{2}}-1\right)+\right. \\
\left.+\frac{2}{\lambda_{k}}\left(\operatorname{coth} \lambda_{k} t_{2}-\frac{e^{2 t_{2}}}{\sinh \lambda_{k} t_{k}}\right)\right] \tag{2.9}
\end{gather*}
$$

3. We show that the systems (2.7) are completely regular [5]. The following inequalities hold for sums of the moduli of the coefficients in the systems (2.7):

$$
\begin{gather*}
\sum_{p=1}^{\infty}\left|a_{k p}\right|=\frac{2 m \beta_{k}}{\varphi_{2}\left(\tan \beta_{k} \varphi_{1}+t \tan \beta_{k} \varphi_{2}\right)} \sum_{p==1}^{\infty} \frac{1}{\lambda_{p}{ }^{2}+\beta_{k}{ }^{2}} \leqslant m \tag{3.1}\\
\sum_{p=1}^{\infty}\left|b_{k p}\right|=\frac{2 \lambda_{k}}{m t_{1}\left(\operatorname{coth} \lambda_{k} t_{1}+\operatorname{coth} \lambda_{k} t_{2}\right)} \sum_{p=1}^{\infty} \frac{1}{\beta_{p}^{2}+\lambda_{k}{ }^{2}} \leqslant \frac{1}{2 m} \tag{3.2}
\end{gather*}
$$

For this, the values

$$
\sum_{p=1}^{\infty} \frac{1}{\beta_{p}^{2}+\lambda_{k}^{2}}=\frac{t_{1}}{2 \lambda_{k}}\left(\cosh \lambda_{k} t_{1}-\frac{1}{\lambda_{k} t_{1}}\right) \leqslant \frac{t_{1}}{2 \lambda_{k}}, \quad \sum_{p=1}^{\infty} \frac{1}{\lambda_{p}^{2}+\beta_{k}^{2}}=\frac{\varphi_{2}}{2 \beta_{k}} \tanh \beta_{k} \varphi_{2}
$$

have been used. The constant number m is selected from the inequalities

$$
\begin{equation*}
m=\frac{1}{2 m}, \quad \text { or } \quad m=\frac{\sqrt{2}}{2} \tag{3.3}
\end{equation*}
$$

Then, in accordance with (3.1), we shall have

$$
\sum_{p=1}^{\infty}\left|a_{k p}\right| \leqslant \frac{\sqrt{2}}{2}, \quad \sum_{p=1}^{\infty}\left|b_{k p}\right| \leqslant \frac{\sqrt{2}}{2}
$$

Thus, the systems (2.7) are shown to be completely regular.
It is easy to see from (2.9) that the free terms in the systems (2.7) have an upper limit and that they approach zero for $k \rightarrow \infty$.
4. By substitution of the values of the coefficients from (2.5) into (2.1)-(2.3) and after replacing the coefficients $B_{k}{ }^{(2)}$ and $D_{k}{ }^{(2)}$ by X_{k} and Y_{k}, in accordance with (2.6), we obtain after certain transformations the following expressions for the functions $\Phi_{i}(t, \phi)$

$$
\begin{align*}
& \Phi_{1}(t, \varphi)=\frac{r_{2}{ }^{2}}{2}+\frac{r_{2}{ }^{2}-2 \Phi_{0}}{2 t_{1}} t+\frac{1}{t_{1}} \sum_{k=1}^{\infty} \frac{X_{k} \cosh \beta_{k}\left(\varphi_{1}-\varphi\right)}{\beta_{k} \cosh \beta_{k} \varphi_{1}} \sin \beta_{k} t \tag{4.1}\\
& \left(0 \leqslant \varphi \leqslant \varphi_{1}, \quad-t_{1} \leqslant t \leqslant 0\right) \\
& \Phi_{2}(t, \varphi)=\frac{r_{2}{ }^{2}}{2}+\frac{r_{2}{ }^{2}-2 \Phi_{0}}{2 t_{1}} t+\frac{1}{t_{1}} \sum_{k=1}^{\infty} \frac{X_{k} \cosh \beta_{k}\left(\varphi_{2}+\varphi\right)}{\beta_{k} \cosh \beta_{k} \varphi_{2}} \sin \beta_{k} t+ \tag{4.2}
\end{align*}
$$

$$
\begin{align*}
& \Phi_{3}(t, \varphi)=\frac{r_{2}{ }^{2}}{2}+\frac{r_{3}{ }^{2}-r_{2}{ }^{2}}{2 t_{2}} t+\frac{m}{\varphi_{2}} \sum_{k=1}^{\infty} \frac{Y_{k}{ }^{\mathrm{sinh}} \lambda_{k}\left(t_{2}-t\right)}{\lambda_{k}{ }^{\sin h \lambda_{k}} t_{2}} \sin \lambda_{k} \varphi- \tag{4.3}
\end{align*}
$$

5. For determination of the constant Φ_{0}, the theorem of Bredt for the circulation of shear stress in torsion

$$
\begin{equation*}
\int_{\Gamma_{0}} T_{s} d s=2 G \tau \Omega_{0} \tag{5.1}
\end{equation*}
$$

is employed, where Γ_{0} is the inside contour of the section, $\Omega_{0}=\pi r_{1}{ }^{2}$ is the area bounded by Γ_{0}, G is the shear modulus, r the angle of twist per unit length, T s the projection of shear stress at any point of the contour Γ_{0} in the tangential direction of the contour

$$
\begin{equation*}
T_{s}=\tau_{z \varphi}=-\frac{G \tau e^{-t}}{r_{2}}\left(\frac{\partial \Phi}{\partial t}-r_{2}^{2} e^{2 t}\right) \quad \text { for } t=-t_{1} \tag{5.2}
\end{equation*}
$$

Substituting (5.2) into (5.1) gives

$$
\begin{equation*}
\int_{-\Phi_{2}}^{\varphi_{1}}\left(\frac{\partial \Phi}{\partial t}\right)_{t=-t_{1}} d \varphi==\int_{-\Phi_{2}}^{0}\left(\frac{\partial \Phi_{2}}{\partial t}\right)_{t=-t_{1}} d \varphi+\int_{0}^{\varphi_{1}}\left(\frac{\partial \Phi_{1}}{\partial t}\right)_{t=-t_{1}} d \varphi=0 \tag{5.3}
\end{equation*}
$$

By substitution of the values of the functions Φ_{1} and Φ_{2} from (4.1) and (4.2) into these relations and then performing the integrations, we obtain the following formula:

$$
\begin{equation*}
\left(\varphi_{1}+\varphi_{2}\right)\left(r_{2}^{2}-2 \Phi_{0}\right)-\frac{2 m}{\varphi_{2}} \sum_{p=1}^{\infty} \frac{Y_{p}}{\lambda_{p}^{2}}=0 \tag{5.4}
\end{equation*}
$$

after a certain transformation to determine the constant Φ_{0}.
The unknown coefficients Y_{p} appearing in (5.4) are determined from the completely regular infinite systems of linear equations (2.7) and are expressed in terms of the constant Φ_{0}.

Substitution of the values of the unknown Y_{p} 's obtained from (2.7) into (5.4) and solving for Φ_{0} yields its value.
6. The torsional stiffness of a doubly-connected profile is determined from the formula

$$
\begin{equation*}
C=2 G\left[-U_{0}^{*} \Omega_{0}^{*}+U_{0} \Omega_{0}+\iint_{\Omega} U d \Omega\right]=2 G\left[-U_{0}^{*} \Omega_{0}^{*}+U_{0} \Omega_{0}+2 n \iint_{\Omega^{*}} U d \Omega\right] \tag{6.1}
\end{equation*}
$$

where $U_{0}{ }^{*}$ is the value of the stress function on the outside contour, U_{0} the value on the inside contour; Ω_{0}^{*} and Ω_{0} are the areas bounded by the outside and inside contours, respectively; Ω is the region of the rod section; and Ω^{*} is that part of the region included in the angle π / n.

By substitution of (1.3) into (6.1) and by using expressions (1.5) and (4.1)-(4.3), we obtain after integration the following formula:

$$
\begin{gather*}
C=2 G\left\{\frac{\pi}{4}\left(r_{2}^{4}-r_{1}^{4}\right)+\frac{\pi}{4 t_{1}}\left(2 \Phi_{0}-r_{2}^{2}\right)\left(r_{2}^{2}-r_{1}^{2}\right)+\right. \\
+ \\
+2 n r_{2}^{2}\left[\frac{n}{\varphi_{2}} \sum_{k=1}^{\infty} \frac{n \varphi_{2}}{4}\left(r_{3}^{4}-r_{2}^{4}\right)-\frac{n \varphi_{2}}{4 t_{2}}\left(r_{3}^{2}-r_{2}^{2}\right)^{2}+\right. \\
- \\
-\frac{4 r_{2}^{2}}{t_{2}} \sum_{k=1}^{\infty} \frac{\tanh \gamma_{k} \varphi_{2}}{\gamma_{k}\left(4+\gamma_{k}^{2}\right)^{2}}\left[1+(-1)^{k+1} e^{2 t_{2}}\right]^{2}- \tag{6.2}\\
\left.\left.-\frac{1}{t_{1}} \sum_{k=1}^{\infty} \frac{X_{k}\left[1+(-1)^{k+1} e^{-2 t_{1}}\right]}{\beta_{k}\left(4+\beta_{h}^{2}\right)}\left(\tanh \beta_{k} \varphi_{1}+\tanh \beta_{k} \varphi_{2}\right)\right]\right\}
\end{gather*}
$$

Upon passing to the limit $t_{1} \rightarrow \infty\left(r_{1}=0\right)$, we obtain from (6.2) a formula for the stiffness of a solid circular section with teeth:

$$
C=2 G\left\{\frac{\pi r_{2}{ }^{4}}{4}+\frac{n \varphi_{2}}{4}\left(r_{3}{ }^{4}-r_{2}^{4}\right)-\frac{n \varphi_{2}}{4 t_{2}}\left(r_{3}{ }^{2}-r_{2}{ }^{2}\right)^{2}+\right.
$$

$$
\begin{gather*}
+2 n r_{2}{ }^{2}\left[\frac{m}{\varphi_{2}} \sum_{k=1}^{\infty} \frac{Y_{k}}{\lambda_{k}\left(4-\lambda_{k}^{2}\right)}\left(1+\operatorname{coth} \lambda_{k} t_{2}-\frac{e^{2 t_{2}}}{\sinh \lambda_{k} t_{2}}\right)-\right. \tag{6.3}\\
\left.\left.-\frac{4 r_{2}^{2}}{t_{2}} \sum_{k=1}^{\infty} \frac{\tanh \gamma_{k} \varphi_{2}}{\gamma_{k}\left(4+\gamma_{k}^{2}\right)^{2}}\left[1+(-1)^{k+1} e^{2 t_{2}}\right]^{2}-\frac{1}{\pi} \int_{0}^{\infty} \frac{X(z)\left(\operatorname{tanhh} z \varphi_{1}+\tanh 2 \varphi \varphi_{2}\right)}{z\left(4+z^{2}\right)} d z\right]\right\}
\end{gather*}
$$

Here the unknown coefficients $X(z)$ and Y_{k} must be determined from the systems obtained from (2.7) by passing to the limit $t_{1} \rightarrow \infty$. By passing to the limit $t_{2} \rightarrow 0\left(r_{3}=r_{2}\right)$, we get a formula for the stiffness of a circular rod with a central circular cavity:

$$
\begin{equation*}
C=\frac{G \pi}{2}\left(r_{2}^{4}-r_{1}^{4}\right) \tag{6.4}
\end{equation*}
$$

For this case we employ the values

$$
\begin{equation*}
X_{k}=Y_{k}=0, \quad \Phi_{0}=\frac{r_{2}{ }^{2}}{2} \tag{6.5}
\end{equation*}
$$

which are obtained from (2.7) and (5.4) by passing to the corresponding limit $t_{2}=0$.
7. For numerical examples we consider the cases where the rod has six external teeth together with a circular cavity (Fig. 1) with the values

FIG. 3.
$\frac{r_{2}}{r_{1}}=1.964, \quad \frac{r_{3}}{r_{2}}=1.2523, \quad \varphi_{1}=\varphi_{2}=\frac{1}{12} \pi$
and also where the rod has one external notch together with a central cavity (Fig. 3) and with the values

$$
\frac{r_{2}}{r_{1}}=1.964, \quad \frac{r_{3}}{r_{2}}=1.2523, \quad \varphi_{1}=0.125=7^{\circ} 09^{\prime} 43^{\prime \prime}
$$

$$
\begin{equation*}
\varphi_{2}=3.0166=172^{\circ} 50^{\prime} 17^{\prime \prime} \tag{7.2}
\end{equation*}
$$

Upon solving the infinite systems (2.7) for these cases we obtain too large and too small values for the unknown coefficients X_{k} and Y_{k}.

From Formulas (5.4) and (6.2) we obtain also the values of the constant Φ_{0} and the stiffness C. These values are presented in Table 1.

In this same table are also included for comparison the stiffnesses of a rod with sections in the shape of circular rings having ratios $b / a=r_{2} r_{1}=1.964$ and $b / a=r_{3} r_{1}=2.4595$; the first ring is obtained from the toothed profile (Fig. 1) by removal of the teeth ($r_{3}=r_{2}$), and the second ring is obtained from the notched profile (Fig. 3) by filling up the notch ($r_{2}=r_{3}$).
table 1.

	$\frac{r_{2}}{r_{1}}=1,964$	Six teeth (Fig. 1)			One notch (Fig. 3)			$\frac{r_{3}}{r_{1}}=2.4595$
		- small	large	mean	too small	$\begin{aligned} & \text { too } \\ & \text { large } \end{aligned}$	mean	
$2 \Phi_{0} / r_{2}{ }^{2}$	1.0	1.237	1.238	1.2375	1.5232	1.5252	1.5242	1.5683
$C / G r_{2}{ }^{4}$	1.4652	2.929	2.941	2.935	3.6208	3.6281	3.6245	3.7579

FIG. 4.

FIG. 5.

Stresses for these cases are calculated with the aid of expressions (4.1)-(4.3) according to the formulas

$$
\begin{equation*}
\tau_{z r}(t, \varphi)=\frac{e^{-t}}{r_{2}} \frac{\partial \Phi}{\partial \varphi} G \tau, \quad \tau_{z \varphi}(t, \varphi)=-\frac{e^{-t}}{r_{2}}\left(\frac{\partial \Phi}{\partial t}-r_{2}^{2} e^{2 t}\right) G \tau . \tag{7.3}
\end{equation*}
$$

TABLE 2.

$\frac{\tau_{z \varphi}}{G \tau r_{2}}$	$\left(0, \varphi_{1}\right)$	$\left(-\frac{t_{1}}{2}, \varphi_{1}\right)$	$\left(-t_{1}, \varphi_{1}\right)$	$\left(t_{2},-\varphi_{2}\right)$	$\left(\frac{t_{2}}{2},-\varphi_{2}\right)$	$\left(-\frac{t_{1}}{2},-\varphi_{2}\right)$	$\left(-t_{1},-\varphi_{2}\right)$
	1.2271	0.8036	0.5446	0.6755	0.5632	0.6114	0.4741
Too seall	1.2278	0.8043	0.5459	0.6757	0.5636	0.6123	0.4754
Too large	1.2274	0.8040	0.5452	0.6756	0.5634	0.6118	0.4748

TABLE 3.

Values of the stress $r_{z \phi}$ at different points (t, ϕ) are presented in Tables 2 and 3 for the cases with six teeth and with one notch. The stress distributions are shown in Figs, 4 and 5.
8. The torsion of a circular prismatic rod having a central circular cavity with symmetrical longitudinal grooves or teeth (Fig. 6) is considered. The exact solution of this problem may be obtained in the same manner as in Sections 1-6.

FIG. 6.

FIG. 7.

For the solution we assume that the stress function $U(r, \phi)$ on the inside contour of the section reduces to zero, and that on the outside contour it takes on a constant value $U_{0}{ }^{*}$.

We seek a solution in the form of (1.3) on the assumption that the function $\Phi(t, \phi)$ takes on the values (1.5); the regions I, II, and III are shown in Fig. 7.

The functions $\Phi_{i}(t, \phi)(i=1,2,3)$ satisfy Equation (1.4) in the respective regions and also the following boundary conditions and continuity conditions:

$$
\begin{gathered}
\Phi_{1}\left(-t_{1}, \varphi\right)-\frac{r_{1}^{2}}{2}=\Phi_{1}(t, 0)-\frac{r_{2}{ }^{2} e^{2 t}}{2}=\left(\frac{\partial \Phi_{1}}{\partial \varphi}\right)_{\varphi=\varphi_{1}}=0 \\
\Phi_{2}\left(t_{2}, \varphi\right)-\Phi_{0}^{*}=\left(\frac{\partial \Phi_{2}}{\partial \varphi}\right)_{\varphi=\varphi_{1}}=0
\end{gathered}
$$

$$
\begin{gather*}
\Phi_{3}\left(t_{2}, \varphi\right)-\Phi_{0}^{*}=\Phi_{3}(0, \varphi)-\frac{r_{2}^{2}}{2}=\left(\frac{\partial \Phi_{3}}{\partial \varphi}\right)_{\varphi=-\Phi_{2}}=0 \tag{8.1}\\
\Phi_{1}(0, \varphi)=\Phi_{2}(0, \varphi), \quad\left(\frac{\partial \Phi_{1}}{\partial t}\right)_{t=0}=\left(\frac{\partial \Phi_{2}}{\partial t}\right)_{t=0} \\
\Phi_{2}(t, 0)=\Phi_{3}(t, 0), \quad\left(\frac{\partial \Phi_{2}}{\partial \varphi}\right)_{\varphi=0}=\left(\frac{\partial \Phi_{3}}{\partial \varphi}\right)_{\varphi=0}
\end{gather*}
$$

where

$$
\begin{equation*}
t_{1}=\ln \frac{r_{2}}{r_{1}}, \quad t_{2}=\ln \frac{r_{3}}{r_{2}}, \quad \Phi_{0}^{*}=U_{0}^{*}+\frac{r_{3}^{2}}{2} \tag{8.2}
\end{equation*}
$$

9. Upon solving Equation (1.4) for the functions $\Phi_{i}(t, \phi)(i=1,2,3)$ by the method of separation of variables and upon satisfying conditions (8.1), we obtain expressions for these functions

$$
\begin{aligned}
& +\frac{4 r_{2}^{2}}{t_{1}} \sum_{k=1}^{\infty} \frac{1+(-1)^{k+1} e^{-2 t_{1}}}{\beta_{k}\left(\beta_{k}^{2}+4\right)} \frac{\cosh \beta_{k}\left(\varphi_{1}-\varphi\right)}{\cosh 3_{k} \varphi_{2}} \sin \beta_{k} t \quad\left(0 \leqslant \varphi \leqslant \varphi_{1},-t_{1} \leqslant t \leqslant 0\right)
\end{aligned}
$$

$$
\begin{align*}
& +\frac{1}{t_{2}} \sum_{h=1}^{\infty} \frac{X_{k}{ }^{\text {conh } \gamma_{k}\left(\varphi_{1}-\varphi\right)}}{\gamma_{k}^{\cosh \gamma_{k} \varphi_{1}}} \sin \gamma_{k} t \quad\left(0 \leqslant \varphi \leqslant \varphi_{1}, \quad 0 \leqslant t \leqslant t_{2}\right) \tag{9.2}\\
& \Phi_{3}(t, \varphi)=\frac{r_{2}{ }^{2}}{2}+\frac{2 \Phi_{0}{ }^{*}-r_{2}{ }^{2}}{2 t_{2}} t+\frac{1}{t_{2}} \sum_{k=1}^{\infty} \frac{X_{k}{ }^{\cosh \gamma_{k}}\left(\varphi_{2}+\varphi\right)}{\gamma_{k}{ }^{\cosh \gamma_{k} \varphi_{2}}} \sin \gamma_{k} t \\
& \left(-\varphi_{2} \leqslant \varphi \leqslant 0, \quad 0 \leqslant t \leqslant t_{2}\right) \tag{9.3}
\end{align*}
$$

where

$$
\begin{equation*}
\alpha_{k}=\frac{(2 k-1) \pi}{2 \varphi_{1}}, \quad \beta_{k}=\frac{k \pi}{t_{1}}, \quad \gamma_{k}-\frac{k \pi}{t_{2}}, \quad m=\frac{\sqrt{2}}{2} \tag{9.4}
\end{equation*}
$$

The integration constants X_{k} and Y_{k} entering into (9.1)-(9.3) are determined from the following combination of infinite systems of linear equations:

$$
\begin{equation*}
X_{k}=\sum_{p=1}^{\infty} a_{k p} Y_{p}, \quad Y_{k}=\sum_{p=1}^{\infty} b_{k p} X_{p}+Q_{k} \quad(k=1,2, \ldots) \tag{9.5}
\end{equation*}
$$

where

$$
\begin{align*}
a_{k p} & =\frac{2 m \gamma_{k}}{\varphi_{1}\left(\tanh \gamma_{k} \varphi_{1}+\tanh \gamma_{k} \varphi_{2}\right)\left(\gamma_{k}^{2}+\alpha_{p}^{2}\right)} \tag{9.6}\\
b_{k p} & =\frac{2 \alpha_{k}}{m t_{2}\left(\operatorname{coth} \alpha_{k} t_{1}+\operatorname{coth} \alpha_{k} t_{2}\right)\left(\alpha_{k}^{2}+\gamma_{p}^{2}\right)}
\end{align*}
$$

$$
\begin{gather*}
Q_{k}=-\frac{2 \alpha_{h} r_{2}^{2}}{m\left(\alpha_{h}^{2}-4\right)\left(\operatorname{coth} \alpha_{k} t_{1}+\operatorname{coth} \alpha_{h} t_{2}\right)} \times \\
\times\left[1+\frac{\alpha_{h}{ }^{2}-4}{2 \alpha_{k} t_{2}}\left(1-\frac{2 \Phi_{0}{ }^{*}}{r_{2}{ }^{2}}\right)-\frac{2}{\alpha_{k}}\left(\operatorname{coth} \alpha_{k} t_{1}-\frac{e^{-2 t_{1}}}{\sinh \alpha_{h} t_{1}}\right)\right] \tag{9.7}
\end{gather*}
$$

Systems (9.5) are completely regular, since the following inequalities hold:

$$
\begin{align*}
& \sum_{p=1}^{\infty}\left|a_{k p}\right|=\frac{2 m \gamma_{k}}{\varphi_{1}\left(\tanh \gamma_{k} \varphi_{1}+\tanh \gamma_{k} \varphi_{2}\right)} \sum_{p=1}^{\infty} \frac{1}{\alpha_{p}^{2}+\gamma_{k}^{2}} \leqslant m=\frac{\sqrt{2}}{2} \tag{9.8}\\
& \sum_{p=1}^{\infty}\left|b_{k p}\right|=\frac{2 \alpha_{k}}{m t_{2}\left(\operatorname{coth} \alpha_{k} t_{1}+\operatorname{coth} \alpha_{k} t_{2}\right)} \sum_{p=1}^{\infty} \frac{1}{\gamma_{p}^{2}+\alpha_{k}^{2}} \leqslant \frac{1}{2 m}=\frac{\sqrt{2}}{2}
\end{align*}
$$

The constant quantity $\Phi_{0}{ }^{*}$ entering into expressions (9.1)-(9.3) is determined from the Bredt's theorem concerning the circulation of shear stress in torsion.

This theorem, as applied to the external contour of the section, is expressed by the relation

$$
\begin{equation*}
\int_{-\varphi_{1}}^{0}\left(\frac{\partial \Phi_{3}}{\partial t}\right)_{t=t_{2}} d \varphi+\int_{0}^{\varphi_{1}}\left(\frac{\partial \Phi_{2}}{\partial t}\right)_{t=t_{2}} d \varphi=0 \tag{9.9}
\end{equation*}
$$

and, after carrying out the integration, takes on the form

$$
\begin{equation*}
\left(\varphi_{1}+\varphi_{2}\right)\left(2 \Phi_{0}^{*}-r_{2}{ }^{2}\right)-\frac{2 m}{\varphi_{1}} \sum_{p=1}^{\infty} \frac{Y_{p}}{\alpha_{p}^{2}}=0 \tag{9.10}
\end{equation*}
$$

The unknown coefficients Y_{p}, determined from the infinite systems of (9.5), are expressed in terms of $\Phi_{0}{ }^{*}$, and in order to find $\Phi_{0}{ }^{*}$ the relation (9.10) must be solved for $\Phi_{0}{ }^{*}$.
10. By making use of Formula (6.1), substituting (1.3) therein and performing the integrations, we obtain the following formula for the stiffness of a circular rod having a central cavity with symmetrical longitudinal grooves:

$$
\begin{aligned}
& C=2 G\left\{\frac{\pi}{4}\left(r_{3}^{4}-r_{2}^{4}\right)-\frac{\pi}{4 t_{2}}\left(2 \Phi_{0}^{*}-r_{2}^{2}\right)\left(r_{3}^{2}-r_{2}^{2}\right)+\frac{n \varphi_{1}}{4}\left(r_{2}^{4}-r_{1}^{4}\right)-\right. \\
& -\frac{n \varphi_{1}}{4 t_{1}}\left(r_{2}^{2}-r_{1}^{2}\right)^{2}+2 n r_{2}^{2}\left[\frac { m } { \varphi _ { 1 } } \sum _ { k = 1 } ^ { \infty } \frac { Y _ { k } } { \alpha _ { k } (\alpha _ { k } ^ { 2 } - 4) } \left(\operatorname{coth} \alpha_{k} t_{1}+\operatorname{coth} \alpha_{k} t_{2}-\right.\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.-\frac{e^{-2 t_{1}}}{\sinh \alpha_{k} t_{1}}-\frac{e^{2 t_{2}}}{\sinh \alpha_{k} t_{2}}\right)-\frac{r_{2}^{2}}{t_{1}} \sum_{k=1}^{\infty} \frac{\operatorname{tenh} \beta_{k} \varphi_{1}}{\beta_{k}\left(\beta_{k}^{2}+4\right)^{2}}\left[1+(-1)^{k+1} e^{-2 t_{1}}\right]^{2}+ \\
& \left.\left.\quad+\frac{1}{t_{2}} \sum_{k=1}^{\infty} \frac{X_{k}\left[1+(-1)^{k+1} e^{2 t_{2}}\right]}{\gamma_{k}\left(\tau_{k}^{2}+4\right)}\left(\tanh \gamma_{k} \varphi_{1}+\tanh \gamma_{k} \varphi_{2}\right)\right]\right\} \tag{10.1}
\end{align*}
$$

As an example, we cite the value of the stiffness in torsion for a circular rod having a central cavity with six symmetrical longitudinal grooves (Fig. 6), when

$$
\begin{equation*}
\frac{r_{2}}{r_{1}}=1.964, \quad \frac{r_{3}}{r_{2}}=1.964, \quad \varphi_{1}=\varphi_{2}=\frac{1}{12} \pi \tag{10.2}
\end{equation*}
$$

Values of the constant Φ_{0}^{*} and the stiffness C for this case, calculated from Formulas (9.10) and (10.1), are presented in Table 4.
table 4.

	$\frac{r_{3}}{r_{2}}=1.964$	With 6 netches or teeth			$\frac{r_{z}}{r_{1}}=3.8573$
		00 enel	teo large	mean	
$2 \Phi_{0}^{*} / r_{2}{ }^{2}$ $C / G r_{2}{ }^{4}$	1.0 21.801	0.9168 22.062	0.9195 22.408	0.9182 22.074	0.2592 23.266

For comparison, the table gives also the stiffness of a red with a section in the form of circular rings with ratios $b / a=r_{3} / r_{2}=1.964$ and $b / a=r_{3} / r_{1}=3.8573$.

BIBLIOGRAPHY

1. Arutiunian, N. Kh., Reshenie zadachi o kruchenif sterzhnei poligonal'nogo poperechnogo sechenila (Solution of problems on torsion of rods of polygonal crosesection). PMI Vol. 13, No. 1, 1949; Dokl. Akad. Nauk Arm. SSR Vol. 9, No. 2, 1948.
2. Abramian, B.L., Kruchenie kruglykh tsilindricheskikh sterzhnei s prodol' nymi pazami klinovidnoi formy (Torsion of circular cylindrical rods with longitudinal wedge-shaped grooves). Dokl. Akad. Nauk Arm. SSR Vol. 28, No. 3, 1959.
3. Stanesku, Cr. and Duaitrescu, L., Torsiunea barelor cilindrice prevazute cu canal de pana. Comaun. Acad. RPR Vol. 8, No. 6, 1958.
4. Manea, V., Torsiunea arborelui cu caneluri radiale exterioare. Studii si cercetari mec. apl. Acad. PRP Vol. 9, No. 2, 1958.
5. Kantorovich, L. V. and Krylov, V.I., Priblizhennye metody vysshego analixa (Approximate Methods of Higher Analysis). Gostekhizdat, 1949.
